
Top 25 hit or miss?
Michael Barwise

Mitre have just published their 2011 "Top 25 Most Dangerous Software Errors" list - a ranking of
what they consider to be the most egregious generic online programming goofs perpetrated last year.
It's a worthy effort and contains a huge amount of valuable guidance, but I have serious reservations
about it nevertheless.
It's a strange mixture of issues in a strange order, and for "generic" errors, they don't seem quite
generic enough. For example, number 3 - "Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')" has a lot in common both conceptually and technically with "Incorrect Calculation of
Buffer Size," but that's at number 20 - obviously much a less critical issue then. The top two slots are
occupied by "Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection')" and "Improper Neutralization of Special Elements used in an OS Command ('OS
Command Injection')" but their primary common root cause (also that of number 4 "Improper
Neutralization of Input During Web Page Generation ('Cross-site Scripting')") - failure to validate
user input properly - is not listed anywhere in the ranked list. It's only referred to in the guidance notes
- a standard (albeit admittedly informative) paragraph starting "assume all input is malicious..." that
occurs in eight of the 25 mitigation sections. This failure to address first principles makes the ranked
list longer than it need be and results in massive redundancy in the detailed mitigation advice. But
most importantly it obfuscates the real problems to be solved by emphasising superficial externalities
at the expense of root causes.
So why is the "Top 25" like this? It's obviously been produced by serious technical experts. But taking
a look at the way the list is compiled, I find the method's not terribly scientific. For starters, it's a trawl
of subjective opinion from a self-selected public. The responses are voted on by a panel of "software
developers, scanning tool vendors, security consultants, government representatives, and university
professors" and then ranked using the Common Weakness Scoring System (CWSS).
The CWSS is similar to the CVSS from First.org in that it ranks an issue on the aggregate of a bunch
of weighted generic characteristics - ease of exploitation, impact and so on. Both these tools do
facilitate arriving at a ranking, but they have two attributes in common that make me cautious about
relying on their results too heavily. First, the documentation for neither system explains the rationale
for either the weighting values or the formulas they use to combine those weightings into the final
ranking - they're taken as read, and they're not at all transparent. Second, both scoring systems operate
at the highest possible level of detail - "this specific weakness/vulnerability" - ignoring commonalities
with others. In the case of the CVSS the latter can be justified by its primary purpose - to rank specific
publicly known software vulnerabilities to guide patching decisions. But to be really useful, the CWSS
should operate at a level much nearer to first principles as it intrinsically deals with much more
generic issues.
One might think the excessively high-level breakdown of "software errors" in the "Top 25" was driven
by these characteristics of the CWSS, but I think both are symptomatic of a more general problem -
the superficial analysis and poor recognition of the significance of root causes which are endemic in
the infosec community. Mitre is not alone - indeed the deficiencies of the "Top 25" are a relatively
minor manifestation of this. An excellent paper by Microsoft Research called "Sex Lies and
Cybercrime Surveys" argues convincingly that the results of "cybercrime surveys" are almost always
completely invalid - primarily due to inadequate recognition of the statistical properties of the sampled
population. Analysis of reports by small numbers of self-selected respondents is incompatible with
sparse populations of stochastically distributed rare events.
We need to encourage software engineering in place of mere "development". We should therefore be
grateful to the "Top 25" for identifying poor practice so we can eradicate it. We need to raise infosec
management from its current status of a medieval black art to that of a modern science, so we should
deprecate the way the "Top 25" is presented.
To achieve either of these objectives will require practitioners who can analyse real-world problems to
first principles and synthesise from those principles to entire robust systems. While we rely on cursory
observation, snap decisions and guesswork to address external appearances, we'll never be able to trust
our own judgement - let alone that of others. Sadly, the way Mitre has categorised software errors in
the "Top 25" tends to perpetuate the problem by encouraging such superficial thinking.

Originally appeared on the Infosecurity Network, July 2011

